<table>
<thead>
<tr>
<th>Description</th>
<th>Drawing / File name</th>
<th>Color page</th>
<th>File page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Basics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Structural survey of ADS applied onto vertical substructure; joint options</td>
<td>ANo.: ADS 100-01v</td>
<td>ADS 01</td>
</tr>
<tr>
<td>1.2</td>
<td>How to install ADS onto vertical substructure</td>
<td>ANo.: ADS 100-02v</td>
<td>ADS 02</td>
</tr>
<tr>
<td>1.3</td>
<td>Structural survey of ADS applied onto horizontal substructure; joint options</td>
<td>ANo.: ADS 100-01h</td>
<td>ADS 03</td>
</tr>
<tr>
<td>1.4</td>
<td>How to install ADS onto horizontal substructure</td>
<td>ANo.: ADS 100-02h</td>
<td>ADS 04</td>
</tr>
<tr>
<td>1.5</td>
<td>Recoveries and slides re. to vert. substructure</td>
<td>ANo.: ADS 100-04</td>
<td>ADS 05</td>
</tr>
<tr>
<td>1.6</td>
<td>Mounting pattern (vertical primary substructure)</td>
<td>ANo.: ADS 100-04/1</td>
<td>ADS 05-1</td>
</tr>
<tr>
<td>1.7</td>
<td>Mounting pattern (horizontal primary substructure)</td>
<td>ANo.: ADS 100-04/2</td>
<td>ADS 05-3</td>
</tr>
<tr>
<td>1.8</td>
<td>Replacement-division of joints- / carrier profiles</td>
<td>ANo.: ADS 100-05</td>
<td>ADS 06</td>
</tr>
<tr>
<td>1.9</td>
<td>Tile grid heights and replacement points</td>
<td>ANo.: ADS 100-06</td>
<td>ADS 07</td>
</tr>
<tr>
<td>1.10</td>
<td>Static reference notes</td>
<td>ANo.: ADS 100-26</td>
<td>ADS 08</td>
</tr>
<tr>
<td>1.12</td>
<td>Illustration of system depths and joint profiles</td>
<td>ANo.: ADS 100-07 + 08</td>
<td>ADS 10</td>
</tr>
<tr>
<td>1.13</td>
<td>Exemplary use of wind barriers / curved walls</td>
<td>ANo.: ADS 100-22 + 23</td>
<td>ADS 11</td>
</tr>
<tr>
<td>1.14</td>
<td>Details of soffit clamps</td>
<td>ANo.: ADS 100-27</td>
<td>ADS 12</td>
</tr>
<tr>
<td>1.15</td>
<td>Details of how to fix shortened tiles (fitting piece,clamp)</td>
<td>ANo.: ADS 100-28 + 29</td>
<td>ADS 13</td>
</tr>
<tr>
<td>2 Typical details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>No. 1: Vertical section of fixed / floating point</td>
<td>ANo.: ADS 100-19</td>
<td>ADS 20</td>
</tr>
<tr>
<td>2.2</td>
<td>No. 1.1: ... onto vertical wooden substructure</td>
<td>ANo.: ADS 100-19.1</td>
<td>ADS 20.1</td>
</tr>
<tr>
<td>2.3</td>
<td>No. 1.2: ... onto horizontal wooden substructure</td>
<td>ANo.: ADS 100-19.2</td>
<td>ADS 20.2</td>
</tr>
<tr>
<td>2.4</td>
<td>No. 1.3: ... onto horizontal metal substructure</td>
<td>ANo.: ADS 100-31</td>
<td>ADS 21</td>
</tr>
<tr>
<td>2.5</td>
<td>No. 2+3: V-section of roof parapet / bottom end</td>
<td>ANo.: ADS 100-20 + 21</td>
<td>ADS 22</td>
</tr>
<tr>
<td>2.6</td>
<td>No. 4+5: H-section of ext. corner (vert. substructure)</td>
<td>ANo.: ADS 100-09 + 10</td>
<td>ADS 23</td>
</tr>
<tr>
<td>2.7</td>
<td>No. 6+7: H-section of ext. corner (hor. substructure)</td>
<td>ANo.: ADS 100-24 + 25</td>
<td>ADS 24</td>
</tr>
<tr>
<td>2.8</td>
<td>No. 8: H-section of internal corner / expansion joint</td>
<td>ANo.: ADS 100-11 + 32</td>
<td>ADS 25</td>
</tr>
<tr>
<td>2.9</td>
<td>- Survey of window details</td>
<td>ANo.: ADS 100-13 + ADS 100-14</td>
<td>ADS 26</td>
</tr>
<tr>
<td>2.10</td>
<td>No. 9.1: H-section window on vert. substructure</td>
<td>ANo.: ADS 100-15 + 16</td>
<td>ADS 27</td>
</tr>
<tr>
<td>2.11</td>
<td>No. 9.2 + 9.3: H-section with clay tile soffit</td>
<td>ANo.: ADS 100-14-1+14.2</td>
<td>ADS 28</td>
</tr>
<tr>
<td>2.12</td>
<td>No. 11.3: V-section of lintel soffit with clay tile</td>
<td>ANo.: ADS 100-15,1+15.2</td>
<td>ADS 29</td>
</tr>
<tr>
<td>2.13</td>
<td>No. 10.2: Vertical section of windowsill by clay tile</td>
<td>ANo.: ADS 100-33 1 + 33.2</td>
<td>ADS 30</td>
</tr>
<tr>
<td>2.14</td>
<td>No. 9.4: H-section of window, horiz. substructure No. 11.2: V-section of win. with sun protection</td>
<td>ANo.: ADS 100-17 + 18</td>
<td>ADS 31</td>
</tr>
<tr>
<td>2.15</td>
<td>No. 9.5+12: Horizontal section: transition from clay tile with Neoprene joint profile to reveal + TICS</td>
<td>ANo.: ADS 100-14.3 + 30</td>
<td>ADS 32</td>
</tr>
<tr>
<td>3 List of components</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Tile grid height 150 mm</td>
<td>ANo.: ADS ET 01 - 05</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Tile grid height 175 mm</td>
<td>ANo.: ADS ET 06 - 10</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Tile grid height 200 mm</td>
<td>ANo.: ADS ET 11 - 15</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Tile grid height 225 mm</td>
<td>ANo.: ADS ET 16 - 20</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Tile grid height 250 mm</td>
<td>ANo.: ADS ET 21 - 25</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Tile grid height 300 mm</td>
<td>ANo.: ADS ET 26 - 30</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Tile grid height 400 mm</td>
<td>ANo.: ADS ET 31 - 35</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Tile grid height 500 mm</td>
<td>ANo.: ADS ET 36 - 40</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Tile grid height 600 mm</td>
<td>ANo.: ADS ET 41 - 45</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>Components irrespective of grid heights</td>
<td>ANo.: ADS ET A 01 - 04</td>
<td></td>
</tr>
</tbody>
</table>
"TONALITY®"-Clay tile facade system
1 "TONALITY®"-Clay tile
2 "TONALITY®"-Adaptive vertical support profile (metallic)
3 "TONALITY®"-Adaptive joint profile (metallic)
4 "TONALITY®"-Protection against dismantling
5 Primary substructure: aluminium T-profiles (performer's services)
6 Primary substructure: metallic wall holders (performer's services)

Primary substructure is to be mounted in accordance with project-related structural analysis

For variations of the joint profile see also corresponding list of components
ADS ET 02, -07, -12, -17, -22, -27, -32, -37, -42

The Adaptive System and its vertical substructure

Joint profile, continuous
joint 8 mm

Precision joint
joint 2 mm

Discontinuous joint profile
joint 8 mm

Terminal profile for closing-off
No protection against dismantling

2018-01 Subject to alterations INDUSTRIAL RIGHTS APPLIED FOR (26) ADS 01
How to install the Adaptive system (ADS) onto vertical primary substructure

Primary substructure:
The determination of distances and the choice of bracket types, plugs, rivets and screws are subject to the project-related structural design according to which the performer has to proceed.

Wall holders, plugs and aluminium T-profiles are part of the performer’s services.

"TONALITY®" - Adaptive vertical profile

So do rivets / drilling screws; and they depend on static figures.

"TONALITY®" - Adaptive joint profile

"TONALITY®" - cladding tile

Note:
These tiles have to be installed free from any constraint.

Example: Axis measurement = 450 mm
Exact tile length = 450 - 8.0 = 442 mm

Tile length =
Axis measurement - 2 x 3.0 - 2 x 1.0 = 8 mm

Primary substructure
(performer’s services)
"TONALITY®"-Clay tile facade system

1. "TONALITY®"-Clay tile
2. "TONALITY®"-Adaptive vertical support profile (metallic)
3. "TONALITY®"-Adaptive joint profile (metallic)
4. "TONALITY®"-Protection against dismantling
5. Primary substructure: aluminium L-profiles (performer's services)
6. Primary substructure: metallic wall holders (performer's services)

Primary substructure is to be mounted in accordance with project-related structural analysis

Structural overview and joint options

ANo. ADS 100-01h

For variations of the joint profile see also corresponding list of components ADS ET 02, -07, -12, -17, -22, -27, -32, -37, -42

Structural overview of the Adaptive System mounted onto horizontal substructure
"TONALITY®" Clay tile facade
How to install the
Adaptive system (ADS)
on to horizontal primary
substructure

ANo. ADS 100-02h
Scale: 1:1 with DIN A3

Tile length =
Axis measurement - 2 x 3.0 - 2 x 1.0 = 8 mm
Example: Axis measurement = 450 mm
Exact tile length = 450 - 8 = 442 mm

Note:
These tiles have to be installed free from
any constraint.

Primary substructure:
The determination of distances and
the choice of bracket types, plugs,
rivets and screws are subject to the
project-related structural design
according to which the performer has
to proceed.

Wall holders, plugs and
aluminium L-profiles are
part of the performer’s
services.

"TONALITY®" Adaptive vertical profile

So do rivets / drilling screws;
and they depend on static figures.

"TONALITY®"-Adaptive joint profile

"TONALITY®" cladding tile

"TONALITY®"
and its vertical substructure
Recoveries and slides relating in vertical primary substructure

The number of wall holders is defined by structural design.

With several carrier rails on top of each other, their total length and the distance between the recoveries of two adjacent rails must not exceed 2.80 m.
"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Mounting pattern
(vertical primary substructure)

ANo. ADS 100-04/1

Mounting Pattern
"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Mounting pattern
(horiz. primary substructure)

ANo. ADS 100-04/2

Mounting Pattern
"TONALITY®" Clay tile facade
Adaptive System (ADS)
Division of replacements
Displacement of joint profiles
carrier profiles

ANo. ADS 100-05

Zo: Tile inset upside
Zu: Tile inset downward

Profile length = Number of grids minus 6 mm

* Thermal linear expansion requires a gap of at least 6 mm between both 2 adjacent tiles and rails (see NTA National Technical Approval).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>18</td>
<td>2694</td>
<td>43</td>
<td>75</td>
<td>75</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>175</td>
<td>16</td>
<td>2794</td>
<td>43</td>
<td>100</td>
<td>75</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>200</td>
<td>14</td>
<td>2794</td>
<td>52</td>
<td>100</td>
<td>100</td>
<td>42</td>
<td>30</td>
</tr>
<tr>
<td>225</td>
<td>12</td>
<td>2694</td>
<td>43</td>
<td>150</td>
<td>75</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>250</td>
<td>11</td>
<td>2744</td>
<td>52</td>
<td>150</td>
<td>100</td>
<td>42</td>
<td>30</td>
</tr>
<tr>
<td>300</td>
<td>9</td>
<td>2694</td>
<td>102</td>
<td>150</td>
<td>150</td>
<td>42</td>
<td>30</td>
</tr>
<tr>
<td>400</td>
<td>7</td>
<td>2794</td>
<td>102</td>
<td>200</td>
<td>200</td>
<td>92</td>
<td>80</td>
</tr>
<tr>
<td>500</td>
<td>5</td>
<td>2494</td>
<td>102</td>
<td>300</td>
<td>200</td>
<td>92</td>
<td>80</td>
</tr>
<tr>
<td>600</td>
<td>4</td>
<td>2394</td>
<td>152</td>
<td>300</td>
<td>300</td>
<td>142</td>
<td>130</td>
</tr>
</tbody>
</table>

Division of Replacements
"TONALITY®"-Clay tile facade
Tile grid heights and replacement points of the Adaptive System (ADS)

ANo. ADS 100-06

Grid height / length ratio (maximum)

150 x 900	400 x 1.600
175 x 900	500 x 1.600
200 x 1.600	600 x 1.600
225 x 1.600	
250 x 1.600	
300 x 1.600	

Intermediate sizes and bigger dimensions on request, if technically feasible.

Tile grid heights
Static reference notes:

1) The client has sole responsibility for the standard safety reference note adaptive rails in relation to the project.

2) Elasticity index EN AW-5083 H24: E = 70.000 N/mm² (compare with DIN EN 1999-1-1)

3) Cross-sectional values of the adaptive vertical profiles:

<table>
<thead>
<tr>
<th>Profile depth</th>
<th>17 mm</th>
<th>27 mm</th>
<th>37 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-sectional area</td>
<td>1,72 cm²</td>
<td>2,12 cm²</td>
<td>2,52 cm²</td>
</tr>
<tr>
<td>Moment of inertia</td>
<td>$I_y = 0,28 \text{ cm}^4$</td>
<td>$I_y = 1,22 \text{ cm}^4$</td>
<td>$I_y = 3,13 \text{ cm}^4$</td>
</tr>
<tr>
<td></td>
<td>$I_z = 7,97 \text{ cm}^4$</td>
<td>$I_z = 11,34 \text{ cm}^4$</td>
<td>$I_z = 14,71 \text{ cm}^4$</td>
</tr>
<tr>
<td>Section modulus</td>
<td>$W_{p_0} = 0,24 \text{ cm}^3$</td>
<td>$W_{p_0} = 0,66 \text{ cm}^3$</td>
<td>$W_{p_0} = 1,26 \text{ cm}^3$</td>
</tr>
<tr>
<td></td>
<td>$W_{p_2} = 0,86 \text{ cm}^3$</td>
<td>$W_{p_2} = 1,90 \text{ cm}^3$</td>
<td>$W_{p_2} = 3,08 \text{ cm}^3$</td>
</tr>
<tr>
<td></td>
<td>$W_{p_2} = 2,66 \text{ cm}^3$</td>
<td>$W_{p_2} = 3,78 \text{ cm}^3$</td>
<td>$W_{p_2} = 4,90 \text{ cm}^3$</td>
</tr>
</tbody>
</table>

Diagram: Channel section
This depth equals that of CLS profiles; suitable for CLS standard profiles such as corner and end profiles.

Due to manufacturing tolerances, the open profiles may not be flush with the tile surface.

Example:
- System depth 66 mm
- System depth 56 mm
- System depth 46 mm

ILLUSTRATION OF SYSTEM DEPTHS

ILLUSTRATION OF JOINT PROFILES

For vertical section
see detail ADS 06

Subject to alterations

INDUSTRIAL RIGHTS APPLIED FOR
"TONALITY®" Clay tile facade
Adaptive system (ADS)
Exemplary application of the wind barrier

WIND BARRIER

TONALITY

Adaptive system (ADS)
Exemplary application of the wind barrier

ANo. ADS 100-22
Scale: 1:2 with DIN A3

Wind barrier as per DIN 1055 for wind loads, part 4
Plug fastened, depends on what type of plug is approved of. According to static requirements.

For wind barriers, vertical external corner profiles with sealing gasket and joint profiles are compulsory.
(dwg all-06+206 to: ADS ET A 01)

TONALITY’s recommendation for the cladding of curved walls:

- **Radius carcass**
- **unrestricted ventilation**

Calculation formula:

\[
\sin \frac{l}{r} = \alpha \\
\]

- \(l\) = length / axis
- \(r\) = outside radius of cladding
- \(\alpha\) = interfacial angle

Example:

- \(l = \text{axis} 450\text{mm}\)
- \(r = 5,150 \text{ mm}\)
- \(\sin \frac{l}{r} = 0,01\)
- \(\alpha = 0,01\)

up to 6° = closed joint profile can be used
6° - 12° = choose open joint profile

CURVED WALLS

TONALITY® cladding tile
unrestricted ventilation

Example:

- \(\alpha = 0,01\)

up to 6° = closed joint profile can be used
6° - 12° = choose open joint profile

TONALITY® cladding tile
unrestricted ventilation

Example:

- \(\alpha = 0,01\)

up to 6° = closed joint profile can be used
6° - 12° = choose open joint profile

TONALITY® cladding tile
unrestricted ventilation

Example:

- \(\alpha = 0,01\)

up to 6° = closed joint profile can be used
6° - 12° = choose open joint profile

TONALITY® cladding tile
unrestricted ventilation
"TONALITY®"-Clay tile facade

Details of soffit clamp

ANo. ADS 100-27
scale 1:2 with DIN-A4

For "TONALITY®" clay tile heights:

150

For "TONALITY®" clay tile heights:

175 + 200 + 225 + 250 + 300 - 600

For placing purchase orders we recommend our ´Order forms´

Delivery without screws.
Manual assembly required.
intermediate inset fitting piece for tile sections with at least two restoring pins
see Ano. dwg all 07 to 09

horizontal section with connector (no tile involved)

horizontal joint spacer for tile sections with one restoring pin only
see Ano. dwg all-16, necessitates glue, e.g. Sikabond T1

intermediate inset fitting piece for tile sections with at least two restoring pins
see Ano. dwg all 07 to 09

horizontal joint spacer for tile sections with one restoring pin only
see Ano. dwg all-16, necessitates glue, e.g. Sikabond T1

* insulation is to be performed in accordance with current thermal protection guidelines
"TONALITY®"-Clay tile facade
Adaptive system (ADS)
vertical section of fixed / floating point onto vertical substructure

ANo. ADS 100-19
Scale: 1:2 with DIN A3
Adaptive system (ADS)
Vertical section of fixed / floating point onto vertical wooden primary substructure

ANo. ADS 100-19.1
scale 1:2 with DIN-A3
"TONALITY®"-Clay tile facade

Adaptive system (ADS)
Vertical section of fixed / floating point onto horizontal wooden primary substructure

ANo. ADS 100-19.2
scale 1:2 with DIN-A3

vertical section

horizontal section

TYPICAL DETAIL 1.2
TONALITY®-Clay tile facade

Adaptive system (ADS)

vertical section of fixed / floating point onto horizontal substructure

ANo. ADS 100-31

Scale: 1:2 with DIN A3

"Lining up carrier rails (joint spring) may be effected by means of rear covered joints.

The German National Board of Structural Engineering (BIFT) permits the use of any plugs matching project-related static design.

"TONALITY®"-joint rear cover

19x66x19x2 mm for all system depths

see ANo.: dwg all-10 (at ADS ET A 03)
Fixed point (fixed point)

Floating point (floating point)

Grid dimensions (grid dim.)

Perforated plate serving as protection against small animals and as ventilation

Recommended closing-off height for roofs above ground:
- For pitched roof areas ≤ 5° = ~100 mm
- For pitched roof areas > 5° = ~50 mm above any covering or fill-up grit.

Min. drainage area of projecting covers or closing-off rails is 20 mm.

Building height:
- Up to 8 m: min. 50 mm
- Over 8 up to 20 m: min. 80 mm
- Over 20 m: min. 100 mm

Design in accordance with the regulations for pitched roofs:
- External vertical lateral rails serving as cover or closing-off should overlap the top edge of either plaster or cladding tiles.

The German National Board of Structural Engineering (BIFT) permits the use of any plugs matching project-related static design.

Incumbent on the building contractor.

"TONALITY®"-Clay tile facade: Adaptive system (ADS)

Vertical section of roof parapet

External vertical lateral rails serving as cover or closing-off should overlap the top edge of either plaster or cladding tiles.

Design in accordance with the regulations for pitched roofs:
- External vertical lateral rails serving as cover or closing-off should overlap the top edge of either plaster or cladding tiles.

Building height:
- Up to 8 m: min. 50 mm
- Over 8 up to 20 m: min. 80 mm
- Over 20 m: min. 100 mm

Recommended closing-off height for roofs above ground:
- For pitched roof areas ≤ 5° = ~100 mm
- For pitched roof areas > 5° = ~50 mm above any covering or fill-up grit.

Min. drainage area of projecting covers or closing-off rails is 20 mm.

The German National Board of Structural Engineering (BIFT) permits the use of any plugs matching project-related static design.

Incumbent on the building contractor.

"TONALITY®"-Clay tile facade: Adaptive system (ADS)

Vertical section of roof parapet

External vertical lateral rails serving as cover or closing-off should overlap the top edge of either plaster or cladding tiles.

Design in accordance with the regulations for pitched roofs:
- External vertical lateral rails serving as cover or closing-off should overlap the top edge of either plaster or cladding tiles.

Building height:
- Up to 8 m: min. 50 mm
- Over 8 up to 20 m: min. 80 mm
- Over 20 m: min. 100 mm

Recommended closing-off height for roofs above ground:
- For pitched roof areas ≤ 5° = ~100 mm
- For pitched roof areas > 5° = ~50 mm above any covering or fill-up grit.

Min. drainage area of projecting covers or closing-off rails is 20 mm.

The German National Board of Structural Engineering (BIFT) permits the use of any plugs matching project-related static design.

Incumbent on the building contractor.

"TONALITY®"-Clay tile facade: Adaptive system (ADS)

Vertical section of roof parapet

External vertical lateral rails serving as cover or closing-off should overlap the top edge of either plaster or cladding tiles.

Design in accordance with the regulations for pitched roofs:
- External vertical lateral rails serving as cover or closing-off should overlap the top edge of either plaster or cladding tiles.

Building height:
- Up to 8 m: min. 50 mm
- Over 8 up to 20 m: min. 80 mm
- Over 20 m: min. 100 mm

Recommended closing-off height for roofs above ground:
- For pitched roof areas ≤ 5° = ~100 mm
- For pitched roof areas > 5° = ~50 mm above any covering or fill-up grit.

Min. drainage area of projecting covers or closing-off rails is 20 mm.

The German National Board of Structural Engineering (BIFT) permits the use of any plugs matching project-related static design.

Incumbent on the building contractor.
External corner, 90° angle with mitre cut and vertical primary substructure.

alu metal sheet, thickness conform to statics (3mm)

(vertical support external corner rail 74x35/45/55 x2mm)

unrestricted ventilation

"TONALITY®" safety movement gasket 60mm (dwg 207)

External corner, 90° angle with visible corner profile on vertical primary substructure

alu metal sheet, thickness conform to statics (3mm)

(vertical support external corner rail 74x45x2mm)

unrestricted ventilation

"TONALITY®" safety movement gasket 60mm (dwg 207)
External corner, 90° angle with mitre cut and horizontal primary substructure

External corner, 90° angle with angular sealing profile, 45° angle, on horizontal primary substructure
Insulation is to be performed in accordance with current thermal protection guidelines.

Insulation is to be performed in accordance with current thermal protection guidelines.
"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Vertical section of window lintel junction

ANo. ADS 100-15
Scale: 1:1 with DIN A3

"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Vertical section of window cornice steelplate junction

ANo. ADS 100-16
Scale: 1:1 with DIN A3

* Insulation is to be performed in accordance with current thermal protection guidelines
“TONALITY®-Clay tile facade
Adaptive system (ADS)
Horizontal section of window with deep soffit

ANo. ADS 100-14.1
Scale: 1:1 with DIN A3

* Insulation is to be performed in accordance with current thermal protection guidelines.

External corner, 90° angle with mitre cut and vertical primary substructure

TYPICAL DETAIL "9.3"
of ANo. ADS 100-13

With small soffit tiles, it is recommended to pre-assemble the corner by using "TONALITY®-soffit clamps.
see page: ADS 12

2018-01 Subject to alterations INDUSTRIAL RIGHTS APPLIED FOR (26) ADS 28
"TONALITY"®-Clay tile facade
Adaptive system (ADS)
Vertical section of lintel soffit with clay tile

Ano. ADS 100-15.1
Scale: 1:1 with DIN A3

TYPICAL DETAIL "11.3"
of Ano. ADS 100-13

*Insulation is to be performed in accordance with current thermal protection guidelines

"TONALITY"®-reveal / lintel profile (100mm)
(or BAS vertical support clinch rail)

Version 1
 flush tiles

Version 2
 staggered tiles

Version 3
 rear side installation

INDUSTRIAL RIGHTS APPLIED FOR
"TONALITY®" - Clay tile facade
Vertical section
window sill by clay tile
>only in natural colored<

ANO. ADS 100-33.1
Scale: 1:1 with DIN A3

ANO. ADS 100-33.2
Scale: 1:1 with DIN A3

 protección against dismantling (sealing)

"TONALITY®" - reveal / lintel profile end rail (20x40x20mm)

horizontal installed "TONALITY®" clay tile (continuous)

for example: Alu-T-profile, coated in color of tile

15
(180)
(46)
~28
~32
17

glazier's services

T-profile

TYPICAL DETAIL "10.2"
of ANO. ADS 100-13
Please adhere to the distance between socket and facade!

"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Vertical section of window
with sunscreen lintel junction

ANo. ADS 100-17
Scale: 1:1 with DIN A3

"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Horizontal section of window
with horizontal primary substructure

ANo. ADS 100-18
Scale: 1:1 with DIN A3

Please adhere to the distance between socket and facade!

"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Vertical section of window
with sunscreen lintel junction

ANo. ADS 100-17
Scale: 1:1 with DIN A3

"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Horizontal section of window
with horizontal primary substructure

ANo. ADS 100-18
Scale: 1:1 with DIN A3

TYPICAL DETAIL "9.4"
of ANo. ADS 100-13

TYPICAL DETAIL "11.2"
of ANo. ADS 100-13

* Insulation is to be performed in accordance with current thermal protection guidelines.

belongs to the building contractor's field of responsibility

conform to CREATON's figures, indices and statics

* Insulation is to be performed in accordance with current thermal protection guidelines.

Please adhere to the distance between socket and facade!

"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Vertical section of window
with sunscreen lintel junction

ANo. ADS 100-17
Scale: 1:1 with DIN A3

"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Horizontal section of window
with horizontal primary substructure

ANo. ADS 100-18
Scale: 1:1 with DIN A3

TYPICAL DETAIL "9.4"
of ANo. ADS 100-13

TYPICAL DETAIL "11.2"
of ANo. ADS 100-13

* Insulation is to be performed in accordance with current thermal protection guidelines.

belongs to the building contractor's field of responsibility

conform to CREATON's figures, indices and statics

* Insulation is to be performed in accordance with current thermal protection guidelines.

Please adhere to the distance between socket and facade!

"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Vertical section of window
with sunscreen lintel junction

ANo. ADS 100-17
Scale: 1:1 with DIN A3

"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Horizontal section of window
with horizontal primary substructure

ANo. ADS 100-18
Scale: 1:1 with DIN A3

TYPICAL DETAIL "9.4"
of ANo. ADS 100-13

TYPICAL DETAIL "11.2"
of ANo. ADS 100-13

* Insulation is to be performed in accordance with current thermal protection guidelines.

belongs to the building contractor's field of responsibility

conform to CREATON's figures, indices and statics

* Insulation is to be performed in accordance with current thermal protection guidelines.

Please adhere to the distance between socket and facade!

"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Vertical section of window
with sunscreen lintel junction

ANo. ADS 100-17
Scale: 1:1 with DIN A3

"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Horizontal section of window
with horizontal primary substructure

ANo. ADS 100-18
Scale: 1:1 with DIN A3

TYPICAL DETAIL "9.4"
of ANo. ADS 100-13

TYPICAL DETAIL "11.2"
of ANo. ADS 100-13

* Insulation is to be performed in accordance with current thermal protection guidelines.

belongs to the building contractor's field of responsibility

conform to CREATON's figures, indices and statics

* Insulation is to be performed in accordance with current thermal protection guidelines.

Please adhere to the distance between socket and facade!

"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Vertical section of window
with sunscreen lintel junction

ANo. ADS 100-17
Scale: 1:1 with DIN A3

"TONALITY®"-Clay tile facade
Adaptive system (ADS)
Horizontal section of window
with horizontal primary substructure

ANo. ADS 100-18
Scale: 1:1 with DIN A3

TYPICAL DETAIL "9.4"
of ANo. ADS 100-13

TYPICAL DETAIL "11.2"
of ANo. ADS 100-13
"TONALITY®"-Clay tile facade
Horizontal section: transition from clay tile to thermal insulation composite system with neoprene centre joint profile
(horizontal primary substructure)

ANo. ADS 100-14.3
Scale: 1:1 with DIN A3

Unterliegende Räume
...subject to alterations...